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In this paper we introduce a new renormalization group method for the study of 
the long-time behavior of Markov chains with finite state space and with trans- 
ition probabilities exponentially small in an external parameter /L A general 
approach of metastability problems emerges from this analysis and is discussed 
in detail in the case of a two-dimensional Ising system at low temperature. 
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1. I N T R O D U C T I O N  

In this paper we study the long-time behavior of Markov chains with finite 
state space S and with transition probabilities satisfying the following 
condition: for any x, y ~ S, with x Cy,  if P(x, y) > 0, then 

exp{-A(x,y)fl-7~} <~P(x,y)<~exp{-A(x,y)fl+~} (1.1) 

where 3(x,y) assumes the values A o = 0 < A , < A 2 <  .-- <A n, and 
7 = ~(/3)~ 0 as fl--* oe. We will consider the case of /~ very large with 
respect to the number of states IS[. 

Stochastic dynamics satisfying this assumption are, for instance, 
Monte Carlo dynamical simulations of statistical models in the low- 
temperature regime (as discussed in Section 3), or Markov chains related 
to small random perturbations of dynamical systems (as explained in the 
Wentzell and Freidlin theory(I)). 

We introduce a new renormalization group method for the study of 
these Markov chains, inspired by the analysis of metastability for the 
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two-dimensional Ising model in the low-temperature regime, developed in 
collaboration with F. Martinelli and E. Olivieri in ref. 8 (see also ref. 12). 

Let me consider here a very simple example in order to illustrate the 
problem and the main ideas of the paper. 

Let S = { 1, 1,..., N} be our state space, and to each state i we associate 
a nonnegative energy function H(i); the stochastic evolution on S is defined 
by a Metropolis algorithm: for each i C j  

f 
O 

P(i, j )  = i exp{ -- [H( j )  - H(i)]/~ 

if l i - j l  > 1 

if [ i - j l = l  and H ( j ) > H ( i )  

if l i -  j[ = 1 and H(j)  <. H(i) 

and P(i, i) is fixed by normalization: 

(1.2) 

P(i, i) = 1 - ~ P(i, j) (1.3) 
j ~ i  

The parameter /~ is very large with respect to N. See Fig. 1 for an 
explicit example. We are considering in this way a kind of random walk on 
1 ..... N with a drift related to the gradient of H. 

Suppose we now have to study the long-time behavior of this chain: 
consider for instance the problem of the determination of the invariant 
measure of the chain. In the case of the present example the solution is very 
simple; in fact it is easy to verify that the invariant measure of this chain 
is given by 

e ~H(i) 
v(i)-~,~_~ e ~ J )  (1.4) 

which is mostly concentrated in the states of minimal energy. If we look for 
a solution of the problem applicable to more general cases, in order words, 
without using the energy function/4,  the main difficulty of the problem is 
then in its multiple tunneling structure. In fact, in the case of large /3 we 
cannot use the ergodic theorem, that is, the Monte Carlo method, since the 
process is trapped in the states corresponding to local minima of the energy 
for times which are exponentially long in /3. We propose here a different 
approach to the problem based on a multiscale analysis of Markov chains 
satisfying (1.1) which enables us to control the convergence to equilibrium 
of the chain. 

In order to study the long-time behavior of the chain in a general case 
we consider a classification of the states in S based on the stability of the 
states on a sequence of time scales. We will show that such a classification 
turns out to be different from that suggested in our example by the energy 
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H(i). For  each state i let E~(i) be the mean time necessary to leave the 
state i. In our example these mean exit times are exponential in the 
minimal energy differences 

m i n ( [ H ( i +  1 ) - - H ( i ) ]  v 0, [H(i-- 1 ) -  H(i) ]  v 0) 

where a v b=max(a,b) .  With such a quantity we can immediately 
discriminate between the states which are completely unstable and those 
corresponding to local energy minima. In fact, due to the structure of the 
transition probabili ty (1.1) there will be states which are completely 
unstable in the sense that their mean exit time is of order one [-in our 
example the states i such that H(i) > H(j)  for j = i + 1 or i -  1 ], and there 
will be stable states for which the mean exit time is exponentially tong in 
fl (in our example the local energy minima). This means that starting from 
a state x, in a rather short time the process typically (that is, with large 
probability) reaches a stable state xl (or remains in the state x if this is 
stable and x = xl in this case) where it spends a very long time, exponential 
in fl; after this time, that is, under the effect of a large fluctuation, the 
process leaves the state x~ and reaches in a very short time a stable state 
x2 (eventually x2=x~, that is, the process goes back to xl )  and so on; 
unstable states are visited only very briefly during these transitions. 

To go on with our classification, we define a first time scale t~ corre- 
sponding to the smaller mean exit time from stable states and we look at 
our chain on this new time scale. Only the stable states are relevant now, 
since the ratio of the time spent by the process in unstable states during an 
interval of time of length tl, with respect to the time spent in stable states, 
is exponentially small in ft. Among the stable states with mean exit time of 
order t~ there will be states which become unstable on this new time scale 
in the sense that the process typically leaves these states and reaches a 
different stable state in a time of order s- t~ with s of order one. 

In the present paper  we realize this time rescaling by defining a new 
Markov  chain, corresponding to the original process observed at time 
intervals of order q ,  on a new state space containing only the states which 
were stable on the original time scale. For  this new chain we can prove 
estimates for the transition probabilities of the same kind as (1.1) and thus 
we can iterate our analysis. 

In this way at each step of the iteration we rescale the time by a factor 
exponentially large in/~ and we renormalize the chain by considering only 
the states which are stable on the new time scale. 

The goal of this paper  is to implement this rescaling in such a way that 
quantities related to the long-time behavior of the original Markov chain, 
e.g., the invariant measure in our example, can be estimated in terms of the 
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new renormalized chain. In other words, we develop here a new approach 
to the study of multiple tunneling problems in the general case, based on 
a recursive procedure. 

We want to note that the time rescaling proposed in this paper is 
different from the simulated annealing procedure, where the temperature 
is slowly decreased during the evolution of the process. (5) However, the 
detailed description of multiple tunneling arising from our analysis can 
open interesting perspectives from the point of view of applications. 

Let me come back to the example with the particular choice of the 
energy function H shown in Fig. 1. Figure la represents all the states 
{1,..., 20} and all the possible transitions of the chain by means of arrows; 
the numbers associated to each arrow are the value of the quantity A(i, j) 
(in unity of energy). 

Let M be the set of stable states with respect to the definition given 
above; this set is represented by the points in Fig, lb. Among these states 
the less stable ones are 2 and 7, with 

Eo-(2) ~-, Eo-(7) ~ e ~ = t 1 

We will show that the chain represented in Fig. la  observed at time of 
order tj is a new Markov chain represented in Fig. lb with transition 

a )  (3 1 0 0 4 0  1 0 7 4  0 0 8 0 0 0 4 2 2 

2 0 7 9 0 2 O 2 0 0 2 7 0 3 3 5 0 0 0 

, 10 T 
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o, ( - - I - - 3 ;  ) 
0 6 8 

4 0 

1 3 

0 

o; ( ) 
0 

Fig. 1. The renormalization procedure in a simple example. 
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probabilities P(1)(x, y) different from zero only if x and y are nearest 
neighbor in M and satisfying (1. l) with 

A(1)(x,y)-- - Z A(x~, x i + l ) -  1 (1.5) 
i = o  

where Xo=X, x, =y, and Ix~-xi+ll = 1, with n = [ y - x l -  1 and where the 
term - 1  represents the entropic factor due to the time rescaling, that is, 
1- - (1 / f l ) ln  t~. The values of A(l)(x,y) are represented in Fig. lb by the 
numbers associated to the arrows. 

In Figs. lc and ld we have the successive steps of the iteration up to 
Fig. le where, under the effect of the rescaling, the initial multiple-well 
problem is reduced to a double well. 

We note that in this construction the states are classified in terms of 
stability on different time scales and in this classification states of higher 
energy can be more stable than states of lower energy for a given time scale 
(see in the example the states 13 and 9). 

The main difficulty in the implementation of this rescaling program is 
that in general, that is, without additional assumptions on the chain, we 
will not be able to define the new Markov chain corresponding to the 
rescaled time and satisfying the hypothesis (1.1), on the same probability 
space by means of a construction path by path, as one might expect, but 
we have to consider as new state space the set of stable states modulo an 
equivalence relation which will be precisely defined in the next section. This 
implies that the new renormalized Markov chain is defined on a different 
probability space and that the relation between the original chain and the 
new one is not immediate as one might hope. However, it is possible to 
state results relating the two chains and which are sufficient to study the 
long-time behavior of the original process. 

In Section 2 the renormalization procedure is described in the general 
case, while in Section 3 the general scheme is applied to the study of 
metastable states for the two-dimensional Ising model by considering the 
Metropolis algorithm, and the results proved by Schonmann and Neves (3'4) 
in this case are rederived. Similar results may be obtained for different 
choices of the algorithm as well, e.g., the Kawasaki algorithm, but in this 
paper, for the sake of brevity, we will consider only the Metropolis case. 

In Section 4 we discuss the relation between our approach and some 
known results on Markov chains. 

2. THE R E N O R M A L I Z A T I O N  PROCEDURE 

For the reader's convenience this section is divided into several parts. 
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2.1. Hypotheses 

We consider a Markov chain {~]~t}t=O,l,2,... on  a finite state space S 
with transition probabilities P(x, y) satisfying the ergodicity condition: 

3n such that Vx, y E S  P"(x,y)>O 

[where P"(x, y) is the n-step transition probability] and also satisfying the 
following additional property: 

Property P. There exists a positive parameter /3, a function 
A(x,y),,x, y e S ,  assuming values Ao=O<A~<A2<. . .<A , , ,  for some 
positive integer n, with A, < o% and a positive function 7 = ?(/~), with 7 ~ 0 
a n d / 3 ~  o% such that i f x r  and P(x,y)>O, then 

exp{-A(x,y)~-?~}<~P(x,y)<~exp{-A(x,y) t~+?~} (2.1) 

We will denote by X,(x) the process starting at x at time 0. 

2.2. The Large-Deviations Functional 

Following the ideas developed in ref. 1 for the study of diffusion 
processes in the small-diffusion regime, to each function ~b:N--,S, 
~b = {~bt}t~N, we associate a functional 

t - - 1  

IEo, t~(~b) = ~ A(~bi, ~i+1) (2.2) 
i = O  

where we define A(x, x)=O for each x e S  and A(x,y)= oo if P(x,y)=O. 
The following large-deviation estimates are easily proved: 

Proposition 2.1. Let ~b be a fixed function starting at x at time O; 
then: 

(i) We have 

P(Xs(x)=Os Vs~ [-0, t])~<e -zE~ 

(ii) If~b is such that ~bsva~bs+l for any s~ [0, t], then we have also a 
lower bound: 

P(Xs(x)=Os Vs~ [0, t])>~e -IE~ ~'/~ 

(iii) For any constant r > O  and for any t<e ~ with ~<z l l  

sup P(IEo,,l(Xs(x)) >~ r) <~ e ~" v ~ + ~  
x 
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where r v A 1 - m a x { r ,  A I }  , with 

3r / In t \  

We remark  that  here, and later on, the sup is actually a max  (and the 
inf is a min). 

Proof. Points  (i) and (ii) are trivial by the definition (2.2) and by 
Proper ty  P. 

Point  (iii) is also very simple: suppose r <A~;  if IEo,,~(Xs(x))>~ r, this 
implies that  there exists a t ime s ~< t such that  A(X~, 25,+ ~)= A x and then 

sup P(IEo,,l(Xs(x)) >1 r) <<. te ~ + ~  
x 

In the case r > A 1 if IEo.,~(Xs)e [jr, ( j  + 1 )r), j = 1, 2,..., this implies that  for 
each j there exist t imes 0 ~< sl < Sz < . . .  < sq <~ t such that  A(X,,, X,,+I ) = r i 
with Z,.q= 1 ri = I[o,t](Xs) >~jr and since 

q <~ IFo,,1(X~) <~ ( j+  1)r 

z~ 1 A 1 

we obta in  

sup P(IEo,,l(Xs(x) ) >~ r) <~ ~ P(Iro, tl(Xs(x) ) e [jr, ( j  + 1)r) 
x j = l  

L c--Jrfl-t- (Tf l+ln  t)(j+ l)r/z/1 

j = l  

C ( r + e/3)B 

~< e~/~/3 1 -- e (-r+~/3//~ ~< e r/~+~./~ 

2.3.  T h e  S t a b l e  S t a t e s  

Fol lowing the scheme of ref. 1, we can define an equivalence relation 
in the state space S by using the functional  (2.2). For  each couple of states 
x and y we define 

V(x, y) - inf IEo, t~(~b ) (2.3) 
t ~ ~0=x ~= v 

and 

x ~ y  iff V ( x , y ) = V ( y , x ) = O  (2.4) 
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We say that x is a minimum if and only if 

fo rany  y 4, x V(x ,y )>O (2.5) 

We will denote by M the set of local minima and we will show that 
the states in M turn out to be the most probable ones. 

For each x �9 S we can define the first hitting time to the set M: 

~M(x) = inf{ t >~ 0; X,(x) ~ M}  (2.6) 

corresponding to the time spent by the process outside the set M. We have 
the following: 

P r o p o s i t i o n  2.2. Let 6 =2yIS] ;  there exist constants ToE [0, ]S]] 
and/~0 such thaf for any/~ >//0:  

(i) For  any t >  To: 

sup P(rM(x) > t) <~ a ['/r~ 
x E S  

with a = 1 -  C r~ for some constant 0 < C < 1 and where [ - ]  denotes the 
integer part. 

(ii) For  any t~>e ~ 

sup P( %4( x ) > t) ~ exp { -exp(6/~/2)} 
x E S  

Remark. We wish to note that this proposition is different from the 
analogous result obtained in the case of a small random perturbation of 
dynamical systems in ref. 1. 

In fact in the present case the attractiveness of the minima is much 
weaker; this is a consequence of the fact that in ref. 1 the process without 
random noise corresponds to a deterministic dynamical system for which 
the set M is the set of m-limit sets, that is, in the case of zero noise the 
deterministic solutions have a deterministic and finite exit time from every 
set not containing any co-limit set. In the present case this is no longer true 
and in the case of zero noise (fl = oe) arbitrarily long trajectories can exist 
which never visit the set M. 

Proof. First of all we want to define the possible classical time T O in 
which the process falls in one of the minima, where classical means in the 
limit fl --* oo. For  each x e S let 

To(x)=inf{t>~O;3~b;Oo=x, Or~MwithlEo, t](O)=O} (2.7) 

and 
To = sup To(x) (2.8) 

x 
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We first show that these times are well defined and that T O < IS[. It is 
sufficient to show that for any x in S there exist s  a time To(x)< [SI, 
and a function ~b such that ~bo=X, ~bTo(x) = s and IEo, r0(x)l(~b) = 0: 

if x e M, then To(x) = 0 
if x r M, then there exists x~ such that V(x, x~) = 0 and V(xa, x) > 0 
if Xl e M, then ~ = xl ,  To(x) is equal to the time minimizing V(x, x~ ) 
if xl q~ M, then there exists x2 such that V(Xl, x2) = 0 and V(x2, Xl) > 0 

if xn_~e M, then s = xn_~, To(x) is equal to the time minimizing 
V(x, x~_~) = 0  

if x . _ ~ r  then there exists x .  such that V ( x n _ l , x . ) = O  and 
V ( X n ,  X n _ l ) > O  

The states xj in this construction must be all different; in fact, if 
xk = xn with k ~< n, then the following would be true: 

V(x~+~,xk)= V(x~+~,xn)<<. V(Xk+~,Xk+2)+ " '  + V ( x . _ ~ , x . ) = O  

which contradicts V(x~ + ~, xk) > O. 
Thus we can conclude that the sequence xj must be finite, and it stops 

at ~ ~ M; by the construction we have V(x, i f )=  0 and then if we choose 
To(x) as the time minimizing V(x, s and ~b the corresponding function, we 
have proved that To <ISI is well defined. We observe also that this func- 
tion 0~, since it is a minimizing function, has the property that ~b~ r 
VsCt,  s, t ~ [ 0 ,  T0(x)]. We can then apply point (ii) of Proposition 2.1, 
obtaining 

inf P(X~(x)=(~ Vs~ [0, To(x)]) >~e -'/T~ 
x 

The conclusion of the proof now is very simple: in order to have the 
estimate (i), we have to choose C =  e -7~. By applying point (i) with t ~> e ~ 
we obtain point (ii): 

supP(rM(X)>t)<~exp{[~-~o]ln(l--exp(--TTot~))}<~exp{--exp6~fl2} 

Corollary 2.1. Let ~ ( 6 ,  A~/2-y) ;  for any t > e  ~ -  T w e  have 

sup P(X,(x) q~ M) <~ e (~/2)t~ 
x 

ProoL We have 

sup P(Xt(x) (~ M) <~ sup P(I[t_ r, t](X~(x)) >~ A 1) 
x x 

+ sup P(X,(x) q~ M c~ I u_ r,,l (X~) = O) 
x 
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The first term is estimated by Proposition 2.1(iii) and the second one 
by Proposition 2.2(ii). 

2.4. The Rescaled Markov  Chain Xt 
These results suggest that if we look at the process X t on a sufficiently 

large time scale, then it can be described in terms of transitions between 
states in M; in this way only the behavior of the process on small times is 
neglected. More precisely, we will construct a new Markov chain with state 
space M, corresponding to the original process looked at at times 
sufficiently large. Let us define 

V1 - inf V(x, y )  (2.9) 
x e M ,  y~S , x  ~ y 

tl = e vl~+~ (2.10) 

Let 0 be the shift operator for the Markov chain X, defined by 

0 ( { X o ,  X,  ..... x . . . . .  .... } (2 .11)  

We will denote by 0p the pth power pf 0: Op = 0 o 0 . . . . .  0 p times. We 
define now recursively a sequence of stopping times: 

and for each n > 1 

a = i n f { t > O ; X ,  7 c Xo} (2.12) 

- inf{t >~ o.; Xt  ~ M }  (2.13) 

~ l = f t l  if o .> t  I 
(2.14) 

if o. -~< t~ 

~ n = ~ n _ l  q - ~ l ~  l (2.15) 

These times are stopping times with respect to the o.-algebra associated 
to the Markov chain. In fact o. and z are stopping times(11); we have to 
prove that ~1 is also a stopping time. If we denote by F~ the o.-algebra 
generated by the process X, up to time t, then it is easy to show that the 
event {(1 ~< t} belongs to the o.-algebra F~: 

{~l~ t}=  {O.>/1} k3 [-{O-~/1} (3 {T~t}] 

if t>~tl, and all these events belong to Ft; if t < t l ,  then the event 
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It is easy to prove ~11) that if ~j is a stopping time, then ~,, are stopping 
times and that the sequence Xn = X~, is an homogeneous Markov chain. 
For  any x e M ,  we can then consider the new Markov chain Xn with 
~o(X)=X. 

Before giving an estimate on the transition probabilities of this chain, 
tet me comment on the relation between this chain and the chain which 
could be considered, in analogy with the work by Wentzell and Freidlin, r 
by looking at the original process at the jumping times between minima, by 
using only the stopping times a and z corresponding to the first exit from 
the equivalence class of a minimum and to the first subsequent hitting time 
to the set of the minima. Also with this chain one can study the long-time 
properties of the process Xt by adapting the techniques and the results 
given in ref. 1. The crucial difference in the definition of the new Markov 
chain I.~,)  considered in this paper is that it is strictly related to the time 
scale tl in the sense that it essentially corresponds to the original process 
viewed on this time scale and this turns out to be crucial in order to classify 
different minima in terms of their stability, as we will clearify later. 

For  any couple of states x, y c M we denote by P(x, y) the transition 
probability of the chain Xn, that is, 

P ( x ,  y )  = P(X~,  = y lX~,,_ 1 = x )  (2.16) 

We can prove the following: 

P r o p o s i t i o n  2.3. There exists /~o > 0  such that for any/~ >/~o and 
for any x, y e M with x 4 ~ y we have the following: 

(a) If for any time t <  [SI and any function q~ such that ~b0 = x, ~b, = y, 
and qksq~Mx, y for any s e  (0, t), there exists s ' <  t such that P(~b',, ~bs,+ ~) =0 ,  
then 

P(x,  y)  = o 

where Mx, y is the set of the minima with the exception of the states x, y 
and all the states which are equivalent to x and y. 

(b) Otherwise, if the quantity 

A(x, y) = inf IEo ,,~(~b) (2.1 7) 
t , ~ b ; ~ b 0  = x, cbt -- y,~bsr Mx, y V s ~  CO, t) 

is well defined, then 

tl exp{-J (x ,y ) /~-37 /~}  <~P(x ,y )<~t~  e x p { - J ( x , y ) / / + ~ / ~ }  (2.18) 

The quantity A(x, y) can assume the values A1 = V~ < A2 < "'" < A,~ 
with J~ < ISI zl, and it is invariant with respect to the equivalence relation 
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in the sense that A ( x , y ) = J ( x ' , y ' )  if x ~ x '  and y..~y'. The quantity ~ is 
given by the following: 

[ 1 ] ,7= (ISI + 1)~,+6+ /~ v (~ ,+6)+6 

which implies that f ~ 0 as fl --* oo. 

Proof. (a) If there does not exist a function ~b and a time t ~< IS[ with 
~bo=X, ~b,=y, and O~r y for any s~(O, t )  such that P(~b~,~b,+m)>0, 
Vs ~< t, then obviously 

P(x,  y)  = P(x~~ = y lX~o ~ = x)  <. S Y~ P(Xs  = ~) = o 
t 0 

where the second sum is taken over all the functions ~b such that ~bo = x, 
~bt=y, and Os6Mx, y for any s~ (0, t). 

(b) First of all we prove that the quantity A(x, y) defined by (2.17) 
is invariant with respect to the equivalence relation (2.4), that is, that 
A(x, y ) =  A(x', y ')  if x ~-, x' and y ~y ' .  Suppose that this is not true and, for 
instance, 

A(x, y )<A(x ' ,  y') (2.19) 

Then this implies that there exists a time t and a function ~b going from x' 
to y' in the time t without touching any other minimum in Mx, y and such 
that IEo, tl(~b)< A(x', y'), contradicting the definition of A(x', y'). In fact this 
function can be constructed by considering the ordered sequence of the 
following three functions: the function minimizing V(x' ,x) ,  then the 
function minimizing A(x, y), and finally the function minimizing V(y, y'). 

Estimate from below." Let x ~c y and let t- 1 = e vl# ~P; we denote by 
q~' Y the function going from x to y minimizing the quantity A(x, y) and by 
i x,y the corresponding time for which we have the trivial and crude 
estimate ix'Y< T - [ S I .  We have 

I l l~T] 

P ( x , y ) > .  Y' 
n = l  

Px(G > nT  c~ X , r =  z c~ X , =  ~z'Y Vs 6 [nT, nT  + {Z'Y]) 
z ~ x  

I l l~T]  

>~ ~ px(cr>nT) e x p { - 3 ( x , y ) f l - - ~ T f l }  (2.20) 
n = l  
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by Proposition 2.1(ii) and by using the fact that X,,r(X)~X if a>nT.  On 
the other hand, by the Markov property we have 

P~(a> 1)>/1- -e  -v~p+~ 

P~(a > s)>~ P~(a > s -  1 ) ( 1 - e  -v~+'~) 

that is, 

which implies 

Px(o > s) ~> (1 - e - v~ + 7~)s 

--1 e 
Px(a > nT) >>. P~(a > {1) ~ (1 - -  c -  Vl/~ + yl~)/1 ~ (2.21) 

2 

for/~ sufficiently large. Estimate (2.21) in (2.20) gives 

P(x, y) >~ [[1/T](e 1/2) exp{ -A (x ,  y)/?-- 7T/~} ~> t~ exp{ -A (x ,  y)/~--~7~/~} 

with 

Yl= ( T +  1 )7+6  + - -  
1 + l n 2 T  

Estimate from above. We have 

P(x , y )<~P(X~(x )=y~z -a<~ea~)+P(z -~r>e  ~) (2.22) 

The first term in the rhs of (2.22) is estimated as follows: 

tl 

<~ ~ P(Xu ~ x Vu <<. s c~ IEs, s+ e6~3(X,(x)) ~> zl(x, y)) 
s = l  

ll 
<~ ~ ~ P(I[o.c~](X,(z))>~A(x,y)) 

s = l  z ~ x  

~< l 1 exp{ -A(x ,  y)/~ + e/~} (2.23) 

from Proposition 2.1(iii) with e = {zT(x, y)/A1} [7 + 6 ]. The second term in 
the rhs of (2.22) by Proposition 2.2(ii) has a superexponential estimate, 
giving the following global estimate of (2.22): 

~< tl exp{ -A(x ,  y) + 92} 

with ~2~< {A(x, y)/A1}[~/-q-6] -t-6. 
The proposition is proved by choosing ~ = max(~l, 72)- 

822/73/1-2-7 
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Remarks. 1. The estimates on the time To appearing in Propos- 
tion 2.2 and on the times corresponding to functions minimizing the 
functionals A(x, y) in terms of the cardinality of the state space are clearly 
very crude estimates which can be improved in concrete situations. 

2. We observe that the states which are not minima, S\M, are 
involved only in the definition of the quantity A(x, y); such quantities are 
the analog of the quantities ~'D(K~, Kj) defined in ref. 1 (see Chapter 6). 

3. We finally remark that the estimates given in Proposition 2.3 are 
invariant with respect to the equivalence relation (2.4). 

2.5. The Renormalized Markov  Chain )~1 =X~ 11 

From this last remark we are tempted to simplify our problem further- 
more by reducing the state space from M to the space of the equivalence 
classes corresponding to the states in M: M/_ =-M, and we expect that it 
is possible to define a new Markov chain on the space 214 with transition 
probabilities satisfying property P and thus we would have the possibility 
to iterate our argument. However, such a program is not attainable in the 
most direct way, because of the following remark. Consider our state space 
M = ml u m2 u -.- u mr, where m~ are equivalence classes for the relation 
(2.4), that is, 

VX, y ~ m i x ~ y 

and 

Vxemi ,  yemj iCj  x ~ y 

and consider our chain J?,. If we define a new process 

Y,=i iff X t 6 m i  (2.24) 

on the state space M = { 1, 2 ..... r }, then we can ask if such a process is a 
Markov chain. Unfortunately I cannot prove this except in the case in 

wh ich  for each mi 

P(x, y )=  ~ P(x', y) u x (2.25) 
y e m i  y ~ m i  

This relation is "almost true" in the sense that by Proposition 2.3, 
/5(x, y) and P(x', y) satisfy estimate (2.18) with A(x, y ) =  A(x', y), but this 
is not enough to prove the Markov property for Yt- An analogous problem 
is present also in the case of the chain constructed in ref. 1. So a simplifica- 
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tion of the process is not allowed in this strong sense of construction of a 
new Markov chain path by path as suggested by (2.24). 

On the state space M we can define a chain X, with transition 
probabilities 

1 
P(i, j) = ~(m~) ~m ~(X) ~ P(x, y) (2.26) 

. , Y C m l  

where ~ denotes the invariant measure of the chain J?,. Here we use the 
ergodicity condition for the chain X, in order to have ~(mi)> 0, Vi. 

For such transition probabilities the estimate (2.18) is obviously true, 
and the invariant measure of the chain X, is obviously { v ( m i ) } i = l  .. . . . .  . 

Let ff 'c3~, ~ c / ~ ,  and W and B be the corresponding sets in M 
(W= Ui~ wmi); we denote by Flw(X, B) the probability that the process ..Y, 
starting at x, at the first entrance time in W hits the set B, and by Flee(i, B) 
the analogous quantity for the process 2,. The following two lemmas can 
be easily proved by applying the results of Lemma 3.3 and 3.4 of ref. 1 
(Chapter 6, pp. 179-183) to the process X, and to the process 2,:  

Lemma 2.1. For any xemi,  ieM\lTV, j~ 17V, 

{exp(-4r~fl) } Flay(i, j) <<. Clw(X, m i) ~ {exp(4r~/~) } Fl~7(i, j) 

For the Markov chain J(, we denote by Exf w the mathematical expec- 
tation of the number of steps until the first entrance in W, calculated under 
the assumption that the initial state of the chain is x, and for the chain 2 i 
we denote the corresponding quantity by E'~'~,. 

Lemma 2.2. For any xemi,  ieifi\ffV, 

{exp(-4r~fl)}/~?~< E~w<<. {exp(gr~fl)} E,"~w 

In fact the quantities Flcv(i, j) and Eifw can be explicitly computed in 
terms of sums and products of the transition probabilities P(i, j) by means 
of a graph technique. We do not develop here such an aspect, which can 
be found in ref. 1. These lemmas enable us to obtain results on the long- 
time behavior of the chain JT,, and thus of the chain X,, by using the 
simpler chain 2,  for which Property P holds. We have in fact the following 
result relating the process X, to the process JT, �9 

T h e o r e m  2.1. Let l~/~2tl, / ~  IT/, and W and B be the corre- 
sponding sets in M; as before we denote by qw(x, B) the probability that 
the process X, starting at x, at the first entrance time in W hits the set B, 
by Exrw the mathematical expectation of the n umber of steps until the 
first entrance in W, calculated under the assumption that the initial state 
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of the chain X, is x, and by v the invariant measure of the chain; then for 
any fl sufficiently large and for any x~m~, i6MkFV, j~  (V: 

(i) 

(ii) 
such that 

We have 

{ e x p ( -  4r~Tfl) } ~w(i, j) <<. qw(X, mj) <~ {exp(4r~Tfi) } {/w(i, j )  

There exists a positive q depending on 7 with ~7 ~ 0 as fl ~ 

(iii) 
for any B ~ 

e "~tlE~w<~E~zw<~e'~tlEigw 

There exist constants C and 7', with ~' ~ 0 as fl ~ ~ ,  such that 

C.  t I �9 e-~'~(B) <<. v(B) ~ C. tl " e~'a9(B) 

and for any A c SkM, 3B c M such that: 

v(A)<~e v~t~+~"v(B) 

Proof. Point (i) is an obvious consequence of Lemma 2.1 and the 
definition of the chain )(l, from which qw(X, B) -- Ow(X, B). 

Point (ii) follows from Lemma 2.2 and the following estimates: 

k e m m a  2.3. For  any fl sufficiently large there exist a small constant 
c, c ~ 0 as fl ~ ~ ,  such that 

tlEx~w e ~ <~Exzw<<. t l E ~ w  e~ 

Proof. By using the strong Markov property we have 

Ex~=E~ ~ ~ ,z (~=n)  
n=l  

=E~ ~ [ ~ + ~ o 0 ~ +  .-. +~o0~~ 
n=l  

x z(x~ r w) z(x~ r w)... z(x~~ ~ r w) z(x~o ~ w) 
n--2 

= E Ex{Z(X~I r W) ~(X~2 • W) -~ z(X~m r W) 
n= l  m=l  

x Ex~mE~IZ(Xr r W) Ex~l z(X~2 r W). . .  z(X~ . . . .  1 

+ ~ E x [ X ( f w > n -  1)Ex~~ W)] 
n = l  

w)]} 

(2.27) 
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Since ~1 is given by 
tl  

~1 = ~ (s + rM(Xs)) Z(a = S) + tlZ(a > tl) (2.28) 
s = !  

we have the following estimates for r 

~1 <~ tl + K+ ~ jz(3x e S\M; Z M(X) = j) (2.29) 
j > K  

~l >>- 71 - 71Z(~x e M; a(x) <<. 71) (2.30) 

with 71 = eV~' 2~,, and thus we obtain 

Exzw~( t l+K)ExZw+ J Ex Z(fw>m) 
n = 1  m = l  

x Ex~ ~ [ ~ jz(3x~ S\M; ZM(X) = j )  z(X~ r W) 
L j >  K 

xEx : ,X (~ve :n -m-1 ) ] }  

+ ~ Ex {Z(gw>n-1)Ex~,_,  ~ jZ(3x~S\M;rM(x)=j)  } 
n = l  j > K  

(2.31) 
(t 1 + K) Ex Z~v 

+ ~ ~ /5~(?w>m ) sup f iy(fw=n--m--1) 
m = l  n ~ r n + l  y e M \ W  

X sup ~ jP~(rM(Z )=j)  
zg:M j >  K 

+ ~. PxZ(fw>n--1)sup Z jP~(rM(z)=j) 
n = l  zgiM j > K  

~< (t~ +K)  E~gw+Z/~gwSU p ~ jPz(%t(z)=j) (2.32) 
z 6 m  j >  K 

and since by Proposition 2.2 

sup ~ jPz(ZM(Z)=j)<~e - ~  
z 6 M j > K  

for some constant c~, by chosing K =  e ~'/~ we obtain the estimate 

Exr w <~ e~Btl Ex~w 

with c exponentially small in/~. 
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As far as the lower bound is concerned, by a similar argument we 
obtain 

n - 2  
Exzw~t lExgW-7,  ~ ~, Ex{Z(gw>m)Ex~ [Z(~xeM;~(x)<~71) 

n = l  rn~l  

x z(X~I r W) Ex~IZ(ew = n - m -  1)3 } 

+ ~ E~{Z(ew>n-1)Ex~,_~Z(3x~M;a(x)<~71) } (2.33) 
n ~ l  

By an estimate like (2.21) 

sup Px(~(x) <~ 71) 
xCW 

~< 1 - {1 - e x p ( -  V , / /+  ~//)}~' 

1 - -  e x p (  - -  t l  l e - ( v 1 , 8 +  7'8)) ~ 1 - -  exp( - 1 e - ~ )  ~< �89 exp( -7 / / )  (2.34) 

we obtain 

Exzw>/"[1Exfw - "{1Ex~we ~,8>~ tlEx~we ~,8 

for e>27 .  
Point (iii) is an easy consequence of the fact that 9 coincides with 

and there exists a constant C such that for any B e  S, (2) 

v(B)= C ~" v(y)Ey ~ zB(X't) 
y~M t=O 

where the constant C is fixed by normalization. 
In fact, if B1 c M, by the definition of ( , ,  

l , ' ( B 1 ) =  C ~ ~ ( y ) e y  Z /~{y} (x ' t )  
y~B I t~o 

and for any y s M we have 

~ e 1 
t l ~ E y  ~ Z(y}(Xt)>~Ey(a v / 1 ) ~  t - l P ( o - >  t -1 )~ - -~ - -  t-i 

t=o  

where {1 =eVl~-~,8, as before. 
For  A c S\M, by using Proposition 2.2, we have 

v(A)=C ~ 9(y)Ey ~ x~(X, )~C.K.  To 
y~M t 0 

for a suitable constant K independent of/~. 
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2.6. The Iteration Scheme 

From these results it is now clear what the strategy suggested in this 
paper is in order to study the long-time behavior of the chain Xt: it can be 
summarized in the following steps: 

1. Construct the set M. 

2. Consider on M the chain Y?, and calculate its transition 
probabilities by means of the quantities A(x, y). 

3. Consider the new chain X, on 3~r: we can call it X~ 1~ on S~1~= M; 
it satisfies Condition P; and then go back to step 1 for this chain. 

We obtain in this way a sequence of chains X~ ") on the spaces S r 
which are smaller and smaller. The iteration scheme is the following: 

S(~ A~~ defined by (2.1), ~~ 
Vx, y~M,  defined by (2.17), M(~ defined immediately after by (2.5), 
V1 is defined by (2.9); for any n ~> 1 we define the quantities 

S~,~ = M~,-  1)/~,_,  (2.35) 

d~")(x,y)=X~"-l)(x,y)-- V. Vx, y e S  ~') (2.36) 

for any r N ~ S<'>: 

t - - 1  

~') - (2.37) I[o,0(r ~ A<m(r ~i+I) 
i = 0  

V~")(x, y) = inf ~') S ~") (2.38) I[o,,3(r Vx, y 
t , ~ ; ~ O ~  x , (b t=  y 

x ~ " ) y  i fand onlyif  V(")(x,y)= V<")(y, x ) = 0  (2.39) 

M(")= {x~S~m;Vy~S<"),y 7~mx V~m(x,y)>O} (2.40) 

J(")(x, y) = inf I~!,3(r Vx, y e M (") 
t, ffa;fbO~ X, O t = y , r  M(n)or  (~s~(n) x ,  y ,  V s e  [0, t ]  

(2.41) 

(2.42) V, + 1 = inf V~")(x, y) 
x ~ M (~), y ~ s (n)x  4: (n) y 

t~+ l = e v"+1~+6~ (2.43) 

By Theorem 2.1 the results on the quantities qw(x, B), Exr W, and v(B) 
can be obtained by looking at the same quantities for the chains X} "). 

2.7. Results in Some Particular Cases (X,=Xt) 
We remark that in the cases in which at each step of this procedure 

there are no equivalent states, then stronger results can be obtained. In this 
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cases in fact there is a correspondence path by path between the chains X, 
and X} n), living now on the same probability space, and this implies that 
not only the quantities qw(x, B) and E~rw can be compared. 

T h e o r e m  2.2. If the chain X, satisfies the additional condition 

Vn>~0 V x e S  (n~, ~yeS  ~), x ~ y ;  x~(n~y (2.44) 

then for any t > Tke ~ .  U, with T k = t l - t 2 . . ,  t k, for any W c  S (~1 and for 
any x e S (k), 

P(zw(X)>t)<,P Z(wk)(x)> + e  c,e~ (2.45) 

for some constant cl, where r ~  ~ is the hitting time to W for the process 
XI k), moreover, there exists a constant A such that 

P(Xt(x ) r S(k+ 1)) ~< e ~ (2.46) 

Proof. We have 

P(z w(X) > t) = P(z(~)(x) > v(k)(t)) (2.47) 

where v(k~(t) is the number of transitions of the chain j((k~ within the 
time t. This probability can be estimated in the following way: 

~ P (z~)(X) > T--~) + P (v(k)(y) < T---~) (2.48) 

and this last term has a superexponential estimate. In fact 

( + )  P v(l)(t) < = P((m~ > t) (2.49) 

with rn~ = t(tl 2) and by a Chebyshev estimate, for any 2 >  0 and by using 
the Markov property, we obtain 

P(~ml > t) ~< e -;~' [ sup ExeX~t] ml 
x E M  

<~ e -)~te)'qml[ sup Exe;'ZM] mx ~ e-; ' te; 'qmte 2cml (2.50) 
xeM 

for some constant c independent of fl, if )t is sufficiently small, In 
conclusion, (2.49) can be estimated by 

e 2t/2e2C(t/t12) ~ e ~'~ (2.51) 
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By iterating the same argument, we easily obtain that 

t 
P (v(k)( t ) < -~-g-~. kTk2) 

( t ) ( t 
<~P v(k--~)(t)<T~_12k--1 +P V(k)(t)<-~---~"k~V(kTk2 1)(t)> 

<~ e c ~  (2.52) 

since the second term in the rhs of (2.52) is estimated as in (2.51. With such 
an estimate we can evaluate by iteration also (2.46) in the following way: 

((k (k+l) t ) P(X,(x)r162 Xv(~l(,)r c~ v(k)(t) > T--- ~ 

+ P  v(k)(t) < ~<e ~ (2.53) 

for some constant A, since the second term in the rhs of (2.53) can be 
estimated by Corollary 2.1 applied to the chain X} k). 

2.8.  A Final  R e m a r k  

Finally let me comment on the applicability of such a renormalization 
procedure. 

The crucial point in our construction is the evaluation of the quan- 
tities J (x ,  y) in which also the nonequilibrium states in S \ M  have a role. 
We note that we can replace the quantities A(x, y) with + ~ for all the 
transitions x ~ y  such that the function ~(x,y) minimizing the quantity 
V(x,y) [defined by (2.3)] in a time t -(x'y) is such that there exists 
s t  (0, t -ix'y)) such that ~.x'Y)=z~Mx.y. Such a transition x--*y for the 
chain -~t can be neglected [i.e., we can consider P(x, y ) =  0] since it will 
never appear in the functions minimizing V (~) and ji1). In fact in this case 
we have 

V(x, y) = V(x, z) + V(z, y) (2.54) 

and the transitions x ~ z and z--* y contribute with a quantity 

A(l)(x, z) + A(1)(z, y) = 3(x, z)-- Vl + 3(z, y)-- V1 

= V(x, z)  - v l  + V(z, y )  - v ,  

= V ( x , y ) - 2 V l < A ( x , y ) -  V~ (2.55) 
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3. METROPOLIS  A L G O R I T H M S  FOR T W O - D I M E N S I O N A L  
ISING SYSTEMS:  M E T A S T A B I L I T Y  

In this section we want to apply the renormalization scheme developed 
in Section 2 to the Markov chain given by the Metropolis algorithm for the 
two-dimensional Ising system, providing a new proof of the results on 
metastability obtained by Neves and Schonmann. (3'4) 

Consider a ferromagnetic nearest-neighbor Ising model in a finite box 
A c Z 2 of side L: to each x eA  we associate a spin variable a ( x ) =  -t-i and 
to each spin configuration a s { - 1, + 1 }A = S we associate a Hamiltonian 

1 h 
HA(a ) = --~ ~ a(x) a(y)---~ ~ a(x) (3.1) 

x , y ~ A , I x  y[ = 1  x ~ A  

external magnetic field, with fixed boundary where h is a uniform 
conditions. 

In order to compute quantities such as the mean value of an arbitrary 
observable f with respect to the Gibbs measure 

e flHA(ff) 

#A(a) (3.2) 
ZA 

here ZA is the partition fuinction, with the Monte Carlo method one 
considers a Markov chain {at}t~ N with state space S =  { -  1, + 1 }A, and 
transition probabilities P(a, a ' ) =  P ( a , + l =  a'lat = a) satisfying the detailed 
balance condition: 

#A(a) P(a, a') = #A(a') P(a', a) (3.3) 

and the ergodic condition. 
An explicit construction of this Markov chain can be given by the 

Metropolis algorithm, which is defined as follows: given the spin configura- 
tion a=a ,  at time t, in order to compute the configuration at+l, we 
choose at random with uniform distribution a site x in A and we compute 

with 

AxH(a) = HA(a ~) -- HA(a) (3.4) 

~'a(y) if x r  y (3.5) 
aX(Y)= ~ - - a ( y )  if x = y  

If AxH(a)~<0, we flip the spin at x; otherwise we flip it with a probability 

exp(--f lAxH(a))  
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In terms of transition probabilities this correspond to the following 
definition: if a v a a', 

0 
P(o-, a ' ) =  (1/[AI) exp{-[3(AxH(~r) v 0)} 

if cz' r aX for all x ~ A 

if ~' = a x for some x 
(3.6) 

As before, we will denote by ~,(~) the process starting at o-. 
This is one of the infinite possible algorithm we can construct satis- 

fying the conditions of reversibility and ergodicity, and even if from a 
numerical point of view this algorithm is not the best, we will study this 
case in order to discuss the consequences of our muttiscale analysis on 
metastable situations. Let us consider the Ising model (3.1) in the case of 
small positive h and with periodic boundary conditions on a sufficiently 
large box A, in the limit of small temperature. Consider the configuration 
- 1  in which all the spins are - 1 ;  in the case h = 0  this state is an 
equilibrium state of the system; however, for h > 0 it becomes metastable 
in the sense that the magnetic field decides the phase even if it is very 
small, but its effects become relevant only on a scale sufficiently large 
[l>~ l~.(h)~ 2/h] ,  as only on large scales does the volume energy dominate 
the surface energy. From a dynamical point of view this means that starting 
form the configuration - 1  locally the system will undergo only small 
fluctuations around the metastable state - 1  for a certain amount of time, 
very large if fl/h is large, until if will "tunnel" to the true equilibriuim + 1. 
The main physical feature of this transition is the existence of a critical 
value lc(h) for the size of the droplets: droplets whose side is smaller than 
IAh)  tend to shrink, whereas the larger ones tend to grow and there is an 
"activation energy" which is necessary to create them. 

A genuine dynamical argument for the existence of the critical size 
lc(h ) was introduced for the first time by Neves and Schonmann (3'4) in the 
framework of a regorous analysis of the Metropolis algorithm in finite 
volume in the zero-temperature limit and by Martinelli et al. (s) (see also 
ref. 9) for a random cluster algorithm (Swendsen and Wang dynamics) in 
the thermodynamic limit at low temperature. Nucleation from a metastable 
state is also studied in ref. 6 for an anisotropic Ising model at very low 
temperature and in ref. 7 in the case of isotropic nearest-neighbor and 
next-nearest-neighbor interactions. 

The main results proved in ref. 3 and 4 can be summarized as follows. 
Let ~(o- ) - inf{ t>~0;  a , ( a )= r /}  be the first hitting time to the 

configuration t/ starting from o-, so that ~ + i ( - 1 )  is the nucleation time, 
that is, the time needed to reach the configuration + 1; let R be the set of 
configurations with all spins - 1  except for those in a rectangle II x 12, 
which are + 1, and let l(q) = rain(/1,/2) for every q e R. 
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T h e o r e m  3.1 (3,3) For any h arbitrarily small, h < 2, with 2/h not 
integer and A sufficiently large: 

(a) For all t/e R: If l(r/) < 2/h, 

lim P(z l ( r / )<Z+l( t / ) )= 1 

If l(t/) > 2/h, 

(b) We have 

lim P(z+~(~/)<z 1(/'])): 1 
fl~oo 

lira P(ZG(--1)<'C +I(--1))= 1 

where G is the set of configurations in R in which the spins + 1 forms a 
square droplet of side I c. 

(c) We have 

lira 1 ~ ~ ~ log E(~ + l ( -  1)) = F(h) 

where F(h)  is explicitly computed in terms of the parameter of the 
Hamiltonian: 

4 
F(h) = 4 l c -  (l 2 - lc + 1)h ~ ~ (3.7) 

with lc = [2/h] + 1. 

(d) We have 

lirn ~ log(z + , ( -  1)) = F(h)  in probability 

(e) z+l  ( - 1 ) / E ( z + l  ( -  1)) converges in distribution as fl ~ oo to an 
exponential random variable of mean one. 

All these results are obtained with the volume A and h fixed, with 
L >> 2/h, and fl is subsequently taken large enough. 

We will give here the strategy of a proof of Theorem 3.1, which is 
completely different from the original proof given in refs. 3 and 4, based on 
the multiscale analysis developed in the previous section, for the Markov 
chain defined by (3.6). 
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Our  p roof  is by induction.  We define, first of  all, the step 0 of our  
induct ion and we prove  it. 

S t e p  0. The start ing point  is the const ruct ion of set set M (~ = M of 
the min ima  [see definition (2.5)]. For  any configurat ion a we denote by 
C+(a) the set of plus spins: 

C+(a) = - {xeA;  ~ ( x ) =  +1}  (3.8) 

L e m m a  3 . 1 ( 0 ) .  A configurat ion a belongs to M, i.e., it is a 
min imum,  if and only if 

VxeC+(~) S G(y) >_- 0 
Y;lY x [ = l  

V x e C  (a) ~ a(y)<~-2 
y ; ly  xl = 1 

This means  that  a conf igurat ion a belongs to M if and only if 

C+(ff) = U Ri 
i 

where R i are rectangles on the lattice of  sides l~ ~< 1~ with l~ > 1 for any i, 
and dis t (R i, R j) > 2 if i r  

This union can be empty,  that  is, - 1  is a min imum.  

Proof. Suppose that  

c+ (o) r U R' 
i 

o r  

C+(a)=~R* but  with l I=1 for s o m e i  
i 

o r  

dis(R i, R;) <~ 2 for some i r j 

Then there is an x e  A such that  at least one of the following s ta tements  
holds: 

(a) a ( x ) =  +1 and at least three a m o n g  the four neares t -neighbor  
sites of x are - 1. 

(b) a(x) = - 1  and two nearest  neighbors  of x are + 1. 
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Then there exists a configuration a'  such that V(a,a')=O and 
V(a', a ) >  0, where a'  is given by a x [see (3.5)] for x satisfying (a) and (b) 
and thus a is not a minimum. 

If C+(a) = t,)i R ~ with l [ >  1 for any i, and dist(R i, R J ) > 2  i f iCj ,  then 
for every x ~ A  the configuration a x has HA(a ~) > HA(a ) and thus a is a 
minimum. 

I . e mma  3 .2 . (0) .  The chain X} ~  has nonequivalent configura- 
tions and t h u s . M =  S (~). 

The proof easily follows from the fact that for our chain A(a, t / )=0  
implies H(a) > H(r/). 

We have now to evaluate the transition probabilities for the new chain 
in M. Let a e M, a-r - 1  be a configuration such that 

c+(a) = U Ri 
i ~ l  

For each i e I  and j =  1, 2 we denote by a(+L, ) and a( /2)  the stable 
�9 . . :/ _ ; / .  . 

configurations g~ven respectwely by the creatmn or the anmhllataon of a 
i i R i. row Lj of length lj in the rectagle This means the following: let t/be the 

configuration defined by 

k c I ,  k ~ i  

where Riw Lil is a rectangle of sides l[, l; + 1, and R i u  L~ is a rectangle 
of sides l I + 1, ls (see Fig. 2). 

If r/ is stable on scale 0 (r/eM), then a(+c!~=r/; otherwise the 
J , . 

configuration o-(+L! ) is the stable configuration to which r/ is connected. 
In fact, if r/~ M, tl~is implies that R i u  L~ has a distance equal to 2 from 
another rectangle R ~. In this case the configuration a(+L!) is such that its 
C§ set contains the smallest rectangle containing R i iJ k u Lj w R . In general, 
a~+L!) is the stable configuration such that there exists a sequence of 
con~gurations ~bi such that ~b0 = tl, ~b, = a(+L), and L(~b)= O. 

q 

Fig. 2. The  sets R i a n d  R ~ w L '  1. 
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An analogous definition can be done for a(_@: if (R~\L}) is a 
rectangle with the smaller side larger than or equal to 2, i.e., if the 
configurat ion tl such that  C+(r/) = (RZ\L~) U~z,~r R~ belongs to M, then 
a ( -  L!) = r/ .  

~therwise  

k ~ I , k ~ i  

a(+C) and a ( L )  are the configurat ion "near" a in the following sense: 

Lemma 3.3(0). (a) We have the following: 

3(a ,  a(+~))  = 2 - h 

A(a, ai_L})) 2 - - h  if l / ) l , .  

(3.9) 

(3.10) 

(b) For  any r / r  a(+_L}), Vie / ,  j =  1, 2, at least one of the following 
statements holds: 

1. If cr and r /are  such that C+(q)  r C+ (a), then for any sequence ~b s 
with ~bo=a, ~bt=tl, and ~b,+l=(~bs) ~, u for some x, there are 
k=k(~b)~> 1 times in which a new row of plus spins is created, that is, 
i~,..., ik, such that  C+(~b~j)= C+(~b~j 1)w {x~j}, where, in the configurat ion 
~b 6 1, x~j has at least three minus neighbor  spins. Let k=k(a,r / )= 
inft,~;~0=~,~,~ ~ k(~b). In this case 

A(a, r/) >t (2 - h)k (3.11) 

2. If a and q are such that  C + ( a )  r C+(t/),  then either 

A(a, r/) >~2 + h  (3.12) 

o r  

J(o-, rl) >t h(C(cr, q ) -  r(a, ~)) = ~ [h(l m - 1)] (3.13) 
m <~ r(cY, tl ) 

where C(a, r l )=  IC+(~)\(C+(~)~C+(~))I, r(6, ~) is the number  of rows 
in C+(a)\(C+(~)c-~C+(a)), and the l m are the lengths of a sequence of 
rows L m such that  Um~r(~,,) Lm = C+(c r ) \ (C+0 / ) )  c~ C+(a)). We stress 
here that  a row L is a set of plus spins L =  t {x~}~= 0 with xk=xo+kgi ,  
where Oi is a uni tary vector of the lattice and a(xk + ij)  = + 1 for some gj 
or thogonal  to ei, a ( x k -  gj) = - 1  and cr(Xo- el) = - 1  = ~r(xj+ gi). We 
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note that C+(~r)\(C+(q)c~ C+(~)) can always be written as Um_<r/~,,~ Lm 
with l m ) 2 ,  since a, t /~M. We also remark that the number r(~r, r/) is 
independent of the choice of the sequence of L m and it can be defined in 
the following way: if C+(~r) r C+(r/) for any sequence ~b s with qt0=a, 
~b,= t/, and ~b,+l = (~b,) x,, Vs<~t, for some xs, there are r=r(~b)~> 1 times in 
which Xs in the configuration r is a plus spin with three minus neighbor 
spins. 

Let r = r(~r, q) = inf,,:;~0= ~,~, =, r(~b). By definition, r(a, q) = k(tl, ~r). 

(c) Let ~ret be a configuration such that C+(~rQ:)=Qt with Qt a 
square of side l; then 

J ( -  1, ao2 ) = 8 - 3h (3.14) 

and for every ~r E M, a r ~rQ2, 

zT(-1,  a)>~ z l ( - 1 ,  a o 2 ) + K ( 2 - h  ) (3.15) 

where K =  k(ae2, a ) =  inft, o;:0=~Q:,:_ ~ k(~b) [see definition in point (bl)] .  

(d) Moreover, 

J (a ,  q) = h  implies H(a)  > H(q) (3.16) 

Proof. First of all a general remark: for any a. t/~ M, if C+ (q) has a 
row of length 1 which is not in C+ (a), then from any ~b going from t/ to 
a we have 

> h ( / -  1) if l < l  c 
I,(~b) > 2 - h  if l>~l C 

(3.17) 

and for any ~b' going from a to q we have 

I,(~b') ~> 2 -  h (3.18) 

In fact, either the function ~b has a move with A(~bi, ~b~+ ~)~> 2 -  h, and 
in this case (3.17) is verified, or it is a sequence of single-spin-flip moves 
such that there exists at least l - 1  times s~ ..... st_~ such that at each s~ a 
plus spin, with two neighbor plus spins, is flipped to minus. Thus (3.17) 
is trivially verified if we note that in the case l>~ I c the inequality 
( l -  1)h > 2 - h holds true. 

In the function ~b' there must exist at least a time s in which a new row 
is created, that is, a minus spin with three neighbor minus spins is flipped 
to plus. 

(a) To prove (3.9), we note that 

A(cr, a(+Lj)) ~< I,(~b) (3.19) 
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with t=l[, r  and for k<~l~, C+(r O:~:.:eiR:, where ck is 
a row of sites of length k and R: w Ck is given in Fig. 3. 

For  such a r we have 

: , ( r  

since only the contribution due to the first transition o----, ffl is different 
from zero. 

On the other hand, by (3.18), 

A(~, a /+O)  >~ 2 - h 

and thus (3.9) is proved. 
In order to obtain (3.10), we follow a similar argument with a function 

~b' such that ~b; = a and for k ~< lf ,  C+(~b2)= (R~\ck) Ot~:,te~ R( 
(b) Let now q r O-(+L!), Vic/ ,  j = 1, 2, and suppose that there exists 

a point x e  C+(~/) such tha~ x~  C+(o-). This implies that every function ~b 
realizing the transition o- ~ q must have at least a time in which a new row 
is created somewhere. If k is the minimal number of rows which have to be 
created in order to obtain r/, then (3.11) follows from the definition of 
~(~, ~). 

Suppose now that C+(~) r C+01); then either the configuration ~/is 
obtained by a with at least a move corresponding to a A(~bi, ~b~ + 1)~> 2 + h, 
and then (3.12) holds, or otherwise for each function ~b going from a to q, for 
each time i in which a plus spin is flipped to minus we have A(~bi, ~bi_ ~) ~<h. 
This means that there are r > 1 entire rows L ~ ..... U of plus spins contained 
in C+(~) which are annihilated with this procedure with a contribution of 
3(~, q) equal to 5Z~=t ( U - 1 ) .  Thus (3.13) is proved. 

In order to prove point (c) of the lemma, we consider the function 

q~o = --1, C+(q~l) = {x}, C+(~2)={x,x-k-el} 

C+(~31: {x,x-[-el,x-~-e2} , C+((94)= {x,x-[-el,x--~-e2, x~t-gt-~-e2} 

Fig. 3. 

R ~ 

The set R i u c:. 

1 
822/73/1-2-8 
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where e~ and e2 are the basic unitary vectors of our lattice, and 

I4((~)=4-h + 2 - h  + 2 - h = 8 -  3h 

Also in this case we remark that each function ~b' going from - 1  to 
aQ2 has a functional I,.(~b') ~> 8 - 3h, since there must exist at least a time s~ 
in which a minus spin four minus neighbor spins is flipped and at least two 
subsequent times sz, s3>sl in which a minus spin with three minus 
neighbor spins is flipped to plus. 

In order to prove (3.15), we note first of all that for each tr ~ M with 
C+ (o)= ~)i~ I Ri, in the function ~b minimizing A ( -  1, a) there are II[ times 
in which a minus spin with four minus neighbors is flipped. In fact the 
mechanism of creation of a new cluster by splitting is not competitive since 
it requires a larger functional 

2 - h + 2 - h + 2 - h + h > 4 - h  

By an argument similar to that of (3.18) we obtain 

J( - 1, o-) = III (4 - h) + (2 - h) ~ (l~ - 1 + l~ - 1) 
i E I  

and (3.15) easily follows. 

(d) If J ( a ,~ / )=h ,  by Eqs. (3.9)-(3.12) this implies that C + ( ~ ) =  
C+(rl) w L'~, where U 1 is a row of length 2 and thus H(q)< H(tr). 

Lemma 3 . 4 (0 ) .  We have 

V 1 = h, t 1 = e ha + ~ (3.20) 

The chain X} 1) on M =  S (1), corresponding to the original chain with 
a rescaled time by the quantity tl, has transition probabilities given by the 
quantities 

A~m)(tr, q)= 3(a, n ) -  h (3.21) 

with 3(a, rl) evaluated in Lemma 3.2(0). 

Proof. The proof of (3.20) easily follows from (3.9)-(3.12). The 
transition probabilities of the chain X~ 1) are evaluated by Proposition 2.3. 

Def in i t ion of Step n. The Markov chain X} n) defined on the state 
space S (n) has the following properties: 
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L e m m a  3 .1 (n ) .  A configuration a �9 M (n), i.e., is a stable state for 
the chain X) n), if and only if 

= U R' 
i 

where R i are rectangles of sides l{~<l~ with l { > n +  1 for any i, and 
dist(R i, R s) > 2  if ivaj. This union can be empty, that is, - 1  � 9  ~"). 

L e m m a  3 .2 (n ) .  The chain X~ n) has nonequivalent configurations 
and thus M (') = S ("+ 1) 

Let a(+L~) and a ( t~)  be defined as in step O, where now M is replaced 
by M ~m. 

k e m m a  3 .3 (n ) .  (a) We have the following: 

3(n)(a, a(+ L~:))= 2 -  (n + 1 )h (3.22) 

A(")(a,a(_L~))=h(lj-(n+l)) Vi, j; lj<lc (3.23.) 

(b) For any t/=~ a at least one of the following statements holds: 

1. If C+(r/) r C+(r  and k=k(a, q) is the minimal number of the 
new row of plus spins which have to be created [see Lemma 3.3(0)], 

A~")(a, q)/> [2 - (n + 1)h]k  (3.24) 

2. If C+(a) r C+(t/), then either 

J(")(a, q ) ~ > 2 - ( n -  1)h (3.25) 

o r  

3~")(a,~)>~h[C(a,,)-r(a,~)(n+ l)]= ~ [h(Im-(n+ l))] (3.26) 
m < ~ r ( a ,  rl) 

where r(a, q) and C(a, r/) are defined as in Lemma 3.3(0). 

(c) We have 

3 (" ) ( -1 ,  aQ,+2) = zl("- 1)(-- 1, aQ,+~) + 4--  2(n + 1 ) h -  3h (3.27) 

for a n y / > n + 2 .  
For any a e M  (~), a ~aQ~ , 

J(")(--1, a)>~J(~)(--1, aQ,+2)+K(2--(n+l)h) (3.28) 

where 
K= k(ao,,+ 2, a) = inf k(~b) 

t,C~;gJ O ~  C~Qn+ 2 , q J t =  a , ~ i  + l - -  (r x 
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(d) Moreover, 

A(")(o, n) = h implies H(a) > H(t/) (3.29) 

L e m m a  3.4(n ). We have 

V,  + l = h, t ,+ l  = e h/~ + ~l~ (3.30) 

chain with a rescaled time by the quantity T , + I  
transition probabilities given by the quantities 

A ("+ l)(~r, q) = J(")(o, I/) - h 

with zl(")(o', t/) evaluated in Lemma 3.3 (n). 

The chain y ( , + l )  o n  M(n)=S (n+l), corresponding to the original 
= l n + l l n . . . t l ,  has 

From S t e p  n t o  S t e p  n + l  

Here we prove the results stated in the previous 

(3.31) 

subsection by 
induction. We suppose that they are proved up to steps n < l c - 3 .  

P r o o f  o f  L o m m a  3 . 1 ( o + 1 ) .  A configuration a s S ( " + I ) = M  (n), by 
Lemma 3(n), is such that 

c+(o-) = U Ri 
i 

where R i are rectangles of sides l~<l~ with l ~ > n +  1 for any i, and 
dist(R i, R j) > 2 if i r  

If o- is such that there is i with l~ = n + 2, then by Lemma 3.3(n) we can 
show that a is not stable on scale n + 1; in fact, 

/I (n+ 1)(o ' o(_L)) = 3~"~(o-, ~t) - h 

=h(#-(,,+ l))-h=h-h=O 

On the other hand, for any configuration t /~S  (~+1) such that 
l[ > n + 2 for any i, by Lemma 3.3(n), we have that 

z~(n+ 1)(rl, ~) > 0 V~ES (n+l) 

P r o o f  o f  L e m m a  3 . 2 ( n  + 1). This result easily follows from (3.32) 
and Lemma 3.3(n)(d), since 

A("+ l)(a, tl) = J("~(a, tl) - h = 0  

implies 

H(a) > H(~) 
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Proof of  Lemma 3.3(n + 1). (a) Equations (3.22) and (3.23) at step 
n + 1 easily follow from Eq. (3.31) and by Lemma 3.3(n) (a) and (b). 

In fact, 

~ ( n +  1)(0. ' 0-( + Lj.) ) = inf i},+ 1)(r 
t,C ~ cP(sln+ l));(bo= a, qbt= a( + Lj),ibsq~ M(n+ + L~.) 

Z~ (n§ I)(0", a ( §  ) ) ---- 3 ( n ) ( a ,  0"(+ L})) - -  h = 2 -- (n + 2)h 

and for any Ceq)(S  ('+1)) going from a to a(+Lj ) in a time t >  1 without 
touching M(~"] 1) there exists at least a time s ~< t such that r and qt, 
verify case (l~l()+Lgf Lemma 3.3(n) and thus 

3 ("+ ~)(a, a(+ c)) = A ('+ 1)(a, a(+ z)) = 2 - (n + 2)h 

In the same way 

3 ("+ l)(o', O'(_Lj)) : A (n+ 1)(0", O'(_ L;)) : h ( l j  - -  ( n  -~ 2)) 

since for any Ce q~(S (n+l)) going from a to a(L!)  in a time t >  1 without 
M(n+ I) J. touching ~,~(+L) and minimizing I,(r there exists at least a time s ~< t 

such that A('+l)(r r  or a time s such that L ~  C+(r but 
L r 1 6 2  C+(r ) and in this case A('+1)(r O,+l)>~h(l j - (n+2)) .  

(b) Equation (3.24) at step n + 1 follows from the same equation at 
step n. In fact, if C+(t/) r C+(~), then for every function in r e r  ~"+ ~)) 
such that ~0 = a, r = t/, let k(r Cs+ 1) be the minimal number of new rows 
of plus spins which have to be created at step i. By the definition of k we 
have that 

k(~bo, r  k(r r  "'" + k(~b,-l, q~,)>~ k((~, ~/) 

In particular, this inequality holds for the function q~e(P(S(n+~)), 
minimizing the quantity i}n+l) in the definition of A(")(a, q). By applying 
Lemma 3.3(n)(bl) and Eq. (3.31) we obtain 

A(')(a, q) = I} "+ 1)(4) 

>-- E 
i<~ t;k(r 1 

i <~ t ;k(r  l ,r >~ 1 

>/r2-  (n + 2)h1 Z 
i<~t;k(~i 1,~i)~> 1 

>~ [ 2 -  ( n + 2 ) h ]  k(a, q) 

[ 2 -  (n+  1)h3 k ( ~ _ t ,  r  

k(L L) 
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If C+(a) r C+(t/),  let q~ be a function in ~ ( S  ~"+1)) minimizing the 
quanti ty I[  n+')  in the definition of zT<")(a, t/). If q~ reaches tt in only one 
step, then the result follows from Lemma 3.3(n)(b). If q~ needs more  than 
one step, say t, then we have two possibilities: 

(i) There exists l<k<~t  such that A{"+l)(q~ 1,~k)>~2--nh and 
thus (3.25) at step n + 1 holds. 

(ii) For  any 1 <k<~t we have 3(n+l)(q~k_l, q~k)<2--nh;  then by the 
result at step n we have 

> Z L) 
i;C+(~i_l) q- C+(~i ) 

>~ Z Z hElm' - (n+l )3  - h  
i;C+(~i-l) q- C+(~i) mi<ri 

>~ y" h [ l m - ( n + t ) ] - h  
m e I(~) 

= h[C(~, ,)  - r(a, ,)(n + 2)]  

where ri = r(q~ 1, q~/), I(q~) is the set of index of rows which are annihilated 
along the function ~ such that  Um~n~) Lm = C+(a)\[C+O1) c~ C + ( a ) ] ,  and 
with [I(q~)l = r(a, tl). 

(c) By the definition of ~(.+1) and by Lemma 3.3(n) we have that 

A(n + l)( --1, aQ.+3)~ A("+ 1)(--1, aO.+2) 

+ A (n+ 1)(O'Qn+2 , ffRn+2,n+ 3) -~ A( n+ 1)( G I Rn+2,n+3' O'Qn + 3) 

= 3~" ) ( -  1, ~ro.+2 ) + 2 [2  - (n + 2 )h ]  - 3h (3.32) 

We have to prove that  for every r ~ ( S  ~"+~)) such that 

~bo= --1, ~b, = ao.+3, Osq~M (n+l) Vs<t  1,aOn+3' 

then we have 

I~ n + ~)(~b)/> 3u')( - 1, O'Qn+2 ) -}- 2[2  -- (n + 2 ) h i  - 3h 

If ~b t = cro,+2, there must  exist in ~b two times i l ,  i2 between 1 and t 
such that  k(~bik_ l, ~bek)>~ 1 or a time i in which k(~b~ 1, qt,)= 2. In both  
cases by (3.22) and (3.24) the result follows. If ~blr by (3.28) we 
have 

A (" + 1)( - 1, ~b 1 ) >~ 3(")( - 1, ao.+2) + k(aq.+2, (~)[2 - (n + 1 )h]  - 3h 
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with k~>l and if k = l ,  by (3.22) and (3.24), A("+l/(~,b~ l,~b,)~> 
2- (n+l )h-h .  T o  p r o v e  (3 .28 )  at step n + l  we note that for every 
~ e m  (n+l), a~aQ,+3, 

j(,+ 1)(_ 1, a) >~ I} "+ 1)(~) 

for some function q~ ~ q~(S (" + ~)) minimizing J(" + 1)( _ 1, or) and thus 

3("+1)(-1 ,  a) 

j> 2(" ) ( -  1, ar + k(aQ,,~, q ~ ) [ 2 -  (n+ 1)hi - h  

+ y, { [ 2 - ( n + l ) h ] k ( ~  1, q~i)- h} 

>~ J ( " ) ( -1 ,  ao,+2) + [2-- (n + 1)h][k(aQ~ ~1) 

+ ~ k(~i_l, ~ ) -  h(1 +card{i;  k ( ~ i _ l ,  ~ i ) ~  1})]  
i;k(~i_ l,~i) >~ 1 

(card is the cardinality) 

>~ j ( , +  1)(_ 1, aQ,+3) + k(~ a)[2 - (n + 2)hi  

Proo[ofl_emma3.4(n+ 1). B y L e m m a 3 . 3 ( n + l ) w e h a v e  Vn+z=h 
and thus the lemma follows from Proposition 2.3. 

The S tep l  c-2 
Up to now we have proved that for any n <~I c -  3, Lemmas 3.1-3.4 

hold and thus the transition probabilities of the chain X (t'-2) can be 
computed by means of the equality A(t'-2)(., �9 ) = ~(~-3)( ",. ) _ h. 

Lemmas 3.1-3.3 at step l~,-2 hold and the proof is exactly the same 
as before, but now 

V~c 1 = inf A (t~ 2)(~r ,q)=2-(Ic-1)h<h 
a, q6M(Ic 2) 

Thus the chain X (~c-1) is such that A (l' l)(a, O(+L))=0 and thus the 
only configurations belonging to M (#- 1) are + 1 and - 1 ,  and 

V~, = J(~c- 1)(- 1, +l)=A(~"-2)(-1, aQ~,) -2+( l , -1)h  (3.33) 

We can conclude that the chain X (t') on the states space { -  1, + 1 } has 

A(t'l(-1, +l)=zl ( l~- l ) ( - -1 ,  + 1 ) - V / = 0  (3.34) 

that is M(~")= +1. 
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Proof of Theorem 3.1. With this construction the proof of 
Theorem 3.1 is quite simple. We observe that with the notation given in 
Lemma 2.1 

P(ZA (~) < ZB(rl)) = q~A,~ ~(~, A) (3.35) 

and thus it is sufficient to control such quantities for one of the chains X) "). 
If we look for instance at point (a) of the theorem, if 10/)=/,  then 
q ~ M  ~t-2), but r / r  ~-1). If we look at the chain X ~t 1) defined on 
M~t 2), we have that 

P(r/, - 1) is of order one 

and 

p(q, M~t- 1 ) \_  1) is exponentially small in/~ for each ~I ~ M(t- 2)\ M{I- 1) 

(3.36) 

We can estimate P(r_l(q)>Z+l(q)) as follows: 

~< P(*M, ll(t/) > e ~)  + P(rMI,-I~\ 1 < e~a) (3.37) 

The first term is estimated by Proposition 2.2 and turns out to be 
superexponentially small and the second one tends to zero as /Y tends to 
infinity by (3.36). The proof of point (b) is completely similar. 

Point (c) follows from Tbeorem2.1(ii) and the evaluation of 
E(~)(z+I(--1)) for the chain X~ It). In fact, by (3.34), 

~ log E(tc)(~ + 1 ( -  1)) = 0  

and thus by Theorem 2.1(ii) 

1 
~ I o g E ( ~ + , ( - 1 ) ) = V I + V 2 +  ... + V , c = ( l c - Z ) h + J r  z) ( -1 ,  Q,c) 

(3.38) 

By Eq. (3.27) we have 

A(~ 2)(-1 ,  Q t ~ ) = 8 + 4 ( l , . - 2 ) - h [ 3 + 3 ( l c - 2 ) + ( l ~ -  1)(l~.-2)] 

= 4 l ~ - h [ l ~ -  1] (3.39) 

and by (3.38) 

1 
= - h [ / c - / ~ +  1] ~ l o g E ( r + , ( - 1 ) l = ( l ~ - 2 ) h + 4 l ~ - h [ l ~ - - l ]  4le 2 

(3.40) 
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Points (e) easily follow from Theorem 2.2 and standard arguments (see, 
e.g., ref. 10): 

If we define 

f(a, t)=P(r +,(a)> tE(z +l(-1)) ) (3.4l) 

we have to prove that 

f (  - 1, t + s) = f ( - -  1, t) f (  - 1, s) + o(fl) (3.42) 

with o(/~)~ 0 as fl--* or. This is an easy consequence of Theorem 2.2; in 
fact, by using the Markov property and the fact that S (~c) = { + 1, - 1 } we 
obtain 

f ( - 1 ,  t + s ) = f ( - 1 ,  t ) f ( - 1 ,  s)+P(Xm(~+~( 1))r ~tc)) (3.43) 

Point (d) easily follows from points (c) and (e). 

4. SOME REMARKS O N  THE RENORMALIZATION PROCEDURE 

As is well known in the theory of Markov chains (see, e.g., ref. 1), the 
invariant measure of the chain Xt with finite state space S and transition 
probabilities P(i, j) can be computed in terms of a graph technique which 
is summatized here. 

Let W be a subset of the state space S; a W-graph is defined as a 
graph consisting of arrows m --, n, m E S \  W, n ~ S, n -r m, satisfying the 
following conditions: 

1. Precisely one arrow comes from any m ~ S\W. 
2. There are no closed cycles in the graph. 

The set of all W-graphs is denoted by G(W) and for any graph 
g e G(W) we define ~ ( g ) =  ]-[ . . . .  u P(m, n). With these notations it is very 
easy to verify that the invariant measure v of the chain X, is given by 

Qi (4.i) v(i) = z j s I  1 QJ 

where 

Qi=  ~ ~z(g) (4.2) 
g~G{i} 

by showing that Qi satisfy the invariant equation 

ISI 

Qi= ~ QjP(j, i) (4.3) 
j = l  
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If we suppose that the chain X t is ergodic and satisfies Hypothesis P 
[-where we consider A(x, y ) =  ~ if P(x, y ) = 0 ] ,  then the quantities To(g) 
can be estimated by 

where 

and if we define 

e-a(g)a-Isl~e < ~(g) < e a(g)~+ ist~ (4.4) 

A(g)= ~ A(m,n) (4.5) 
m ~ b ~ g  

V{i} = min A(g) (4.6) 
g~a{i} 

then the invar[ant measure of the chain can be easily estimated in terms 
of e -  v{i}, 

Our renormalization procedure in this context corresponds to break- 
ing up the problem into finding the graph g minimizing V{i} in simpler 
minimization problems on a sequence of independent scales. In fact, we can 
note that if we consider the first chain constructed in our analysis, that is, 
the chain )7 t on the stable states, and if we suppose to know the graph g* 
minimizing V{i}, defined as (4.6) for the chain )(t, we can then construct 
a graph g* minimizing V{i}. In fact, to each m ~ n ~ ~*, m, n ~ M, we 
associate the sequence of arrows defined by the function ~b which minimizes 
the quantity A(m, n) and we add to the set of arrows constructed in this 
way all the sequences of arrows starting from each unstable state not yet 
touched by the previous sequences of arrows, and going to a stable state 
and such that their contribution to A(g) is zero (see the first part of the 
proof of Proposition 2.2 for a proof that this is always possible). In this 
way we have defined a set of arrows containing an {/}-graph g* such that 

A(g*) <. V{i} + (]M[ - 1) V 1 (4.7) 

On the other hand, we have the inequality 

V{i} >t V{i} + ( [ M e -  1)Vx (4.8) 

In fact, i fg  is a graph minimizing V{i}, then for each k~ M it contains 
a sequence of arrows going from k to another point in M, say j, without 
touching other stable states and contributing to V{i} with a quantity 
greater than or equal to 2(k, j). The set of these transitions between stable 
states provides an {/}-graph in the space M. 

From (4.7) and (4.8) we can conclude that the graph g* constructed 
above minimizes V{i}. By repeating this argument on each scale we obtain 
the solution of the minimization problem. 
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A similar discussion can be developed for the problem of the exit of 
the Markov process from a given domain, which can be analyzed in terms 
of graphs. 
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